125 research outputs found

    Hepatic changes during a carrageenan induced granuloma in rats

    Get PDF
    Hepatic changes during inflammation were studied in rats bearing a carrageenan induced granuloma. In spite of a decrease in the metabolic capacity of microsomes to induce lipid peroxidation during inflammation, the endogenous lipid peroxidation remained unchanged and unrelated with the hepatic activities measured. The continuous increase in hepatic cAMP observed during acute and chronic phases could be related to adenylate cyclase stimulation by mediators, and could be an initial step in the hepatocyte adaptation leading to the increased level of hepatic caeruloplasmin, to the reduction of cytochrome P-450 level and to the modifications of Ca2+ sequestration by microsomes

    Interview investigation of insecure attachment styles as mediators between poor childhood care and schizophrenia-spectrum phenomenology

    Get PDF
    Background Insecure attachment styles have received theoretical attention and some initial empirical support as mediators between childhood adverse experiences and psychotic phenomena; however, further specificity needs investigating. The present interview study aimed to examine (i) whether two forms of poor childhood care, namely parental antipathy and role reversal, were associated with subclinical positive and negative symptoms and schizophrenia-spectrum personality disorder (PD) traits, and (ii) whether such associations were mediated by specific insecure attachment styles. Method A total of 214 nonclinical young adults were interviewed for subclinical symptoms (Comprehensive Assessment of At-Risk Mental States), schizophrenia-spectrum PDs (Structured Clinical Interview for DSM-IV Axis II Disorders), poor childhood care (Childhood Experience of Care and Abuse Interview), and attachment style (Attachment Style Interview). Participants also completed the Beck Depression Inventory-II and all the analyses were conducted partialling out the effects of depressive symptoms. Results Both parental antipathy and role reversal were associated with subclinical positive symptoms and with paranoid and schizotypal PD traits. Role reversal was also associated with subclinical negative symptoms. Angry-dismissive attachment mediated associations between antipathy and subclinical positive symptoms and both angry-dismissive and enmeshed attachment mediated associations of antipathy with paranoid and schizotypal PD traits. Enmeshed attachment mediated associations of role reversal with paranoid and schizotypal PD traits. Conclusions Attachment theory can inform lifespan models of how adverse developmental environments may increase the risk for psychosis. Insecure attachment provides a promising mechanism for understanding the development of schizophrenia-spectrum phenomenology and may offer a useful target for prophylactic intervention

    Pragmatic, open-label, single-center, randomized, phase II clinical trial to evaluate the efficacy and safety of methylprednisolone pulses and tacrolimus in patients with severe pneumonia secondary to COVID-19: the TACROVID trial protocol

    Get PDF
    Introduction: Some COVID-19 patients evolve to severe lung injury and systemic hyperinflammatory syndrome triggered by both the coronavirus infection and the subsequent host-immune response. Accordingly, the use of immunomodulatory agents has been suggested but still remains controversial. Our working hypothesis is that methylprednisolone pulses and tacrolimus may be an effective and safety drug combination for treating severe COVID-19 patients. Methods: and analysis: TACROVID is a randomized, open-label, single-center, phase II trial to evaluate the ef- ficacy and safety of methylprednisolone pulses and tacrolimus plus standard of care (SoC) versus SoC alone, in patients at advanced stage of COVID-19 disease with lung injury and systemic hyperinflammatory response. Patients are randomly assigned (1:1) to one of two arms (42 patients in each group). The primary aim is to assess the time to clinical stability after initiating randomization. Clinical stability is defined as body temperature≤37.5 ◦C, and PaO2/FiO2 > 400 and/or SatO2/FiO2 > 300, and respiratory rate ≤24 rpm; for 48 consecutive hours. Discussion: Methylprednisolone and tacrolimus might be beneficial to treat those COVID-19 patients progressing into severe pulmonary failure and systemic hyperinflammatory syndrome. The rationale for its use is the fast effect of methylprednisolone pulses and the ability of tacrolimus to inhibit both the CoV-2 replication and the secondary cytokine storm. Interestingly, both drugs are low-cost and can be manufactured on a large scale; thus, if effective and safe, a large number of patients could be treated in developed and developing countries

    Regulation of Pax6 by CTCF during Induction of Mouse ES Cell Differentiation

    Get PDF
    Pax6 plays an important role in embryonic cell (ES) differentiation during embryonic development. Expression of Pax6 undergoes from a low level to high levels following ES cell differentiation to neural stem cells, and then fades away in most of the differentiated cell types. There is a limited knowledge concerning how Pax6 is regulated in ES cell differentiation. We report that Pax6 expression in mouse ES cells was controlled by CCCTC binding factor (CTCF) through a promoter repression mechanism. Pax6 expression was significantly enhanced while CTCF activity was kept in the constant during ES cell differentiation to radial glial cells. Instead, the interaction of CTCF with Pax6 gene was regulated by decreased CTCF occupancy in its binding motifs upstream from Pax6 P0 promoter following the course of ES cell differentiation. Reduced occupancy of CTCF in the binding motif region upstream from the P0 promoter was due to increased DNA methylations in the CpG sites identified in the region. Furthermore, changes in DNA methylation levels in vitro and in vivo effectively altered methylation status of these identified CpG sites, which affected ability of CTCF to interact with the P0 promoter, resulting in increases in Pax6 expression. We conclude that there is an epigenetic mechanism involving regulations of Pax6 gene during ES cell differentiation to neural stem cells, which is through increases or decreases in methylation levels of Pax6 gene to effectively alter the ability of CTCF in control of Pax6 expression, respectively

    The HOXB4 Homeoprotein Promotes the Ex Vivo Enrichment of Functional Human Embryonic Stem Cell-Derived NK Cells

    Get PDF
    Human embryonic stem cells (hESCs) can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs) formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs) but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34+CD45RA+ precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells

    Decoding the regulatory network of early blood development from single-cell gene expression measurements.

    Get PDF
    Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.We thank J. Downing (St. Jude Children's Research Hospital, Memphis, TN, USA) for the Runx1-ires-GFP mouse. Research in the authors' laboratory is supported by the Medical Research Council, Biotechnology and Biological Sciences Research Council, Leukaemia and Lymphoma Research, the Leukemia and Lymphoma Society, Microsoft Research and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute. V.M. is supported by a Medical Research Council Studentship and Centenary Award and S.W. by a Microsoft Research PhD Scholarship.This is the accepted manuscript for a paper published in Nature Biotechnology 33, 269–276 (2015) doi:10.1038/nbt.315
    corecore